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INTRODUCTION

Public roads are places where the transition 
curves are applied [1, 2]. The requirements to 
be met by the transition curves in Poland can be 
found in the “Regulation of the Minister of Trans-
port and Maritime Economy of March 2, 1999, 
on technical conditions to be met by appropriate 
public roads and their location” [3] and in the 
“Regulation of the Minister of Infrastructure of 
January 16, 2002, on technical and construction 
regulations for toll motorways” [4]. 

According to the aforementioned legal acts, 
transition curves should be used when connecting 
two road sections with different, constant curvature 
values. It is allowed to replace the transition curve 
with the transition straight line only in justified 
cases on L and D class roads and Z class streets [3].

The transition curve has a variable radius, 
from r = ∞ (k = 0) at contact with the straight 
line to the value of R equal to the size of the arc 
radius [5, 6]. Thanks to this, the continuity of the 
route is maintained [7]. A vehicle moving along a 
curve is influenced by centrifugal force, the value 
of which increases with increasing curvature. In 
the transition curve, there is a combination of 
translational and rotary motion [8, 9]. There have 
been many studies verifying the suitability of the 
curves for the routing of circular roads [10–13], 
in which emphasis was placed on the dynamics 
of the vehicle movement along this curve and on 
their compliance with the boundary conditions 
[14]. The track-vehicle system is often considered 
crucial for road safety [15].

This study focuses on the appropriate selec-
tion of the transition curve length.. According to 
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the literature the three transition curves are most 
frequently used in the design of circular roads: 
clothoid [16, 17], the 3rd-degree parabola [18] 
and Bernoulli lemniscate [18]. The above curves 
are also the most frequently used in designing 
and building roads in Poland [19, 20]. The study 
aimed to investigate whether the selected transi-
tion curves will not exceeding the allowable in-
crease in centripetal acceleration and the result-
ing geometric condition of reaching at least the 
minimum length.

Research methodology

The primary condition for the selection of 
the transition curve is the maximum increase 
in centripetal acceleration acting on the vehicle 
moving along this curve, which depends on the 
speed on a given road section. The turning angle 
along the transition curve should be in the range 
of 3°–30°. It does not apply when the angle of 
the route change is less than 9° and the serpentine 
(Table 1) [3, 4]. 

The roadway should have a transverse slope 
enabling the free flow of water, and its value, ex-
cept for a few exceptions, depends on the surface 
type and amounts to 2.0%, 3.0% or 4.0% [3]. The 
transverse slope of the motorway roadway should 
not be less than 2% [4]. There are three cases 
when the transition curve may not be used [3]:
 • the radius of the arc in the plane is higher than 

2,000 m on the road outside the built-up area 
at a design speed of 33.33 m/s and 27.78 m/s;

 • the radius of the arc in the plane is higher than 
1,000 m at a design speed of 22.22 m/s and less;

 • the road on the building site has a trans-
verse slope on the curve in the plane, as on a 
straight section.

On the basis of this regulation, 37 cases were 
selected for which the lengths of the transition 
curves were tested:
 • for design radii of circular curves with val-

ues: 300, 500, 700 and 900 metres, transition 
curves were calculated for seven design vehi-
cle speeds (13.89, 16.67, 19.44, 22.22, 25.00, 
27.78 and 33.33 [m/s]);

 • for design circular curve radii with values: 
1100, 1300 and 1500 metres, transition curves 
were calculated for three design vehicle speeds 
(25.00, 27.78 and 33.33 [m/s]).

Based on the said regulation [3], using the 
formula [21]:

a = √v3
ψd

 [m] (1)

where: a– transition curve parameter [m];
 v – design speed of the vehicle [m/s]; 
 Ψd  – acceleration [m/s3].

Seven minimum values for the parameter 
amin  were calculated (Table 2), applicable to G 
class roads [3]. 

Using the formula [14]:

Lmin = v3

Rψ [m] (2)

where: Lmin – minimum length of the transition 
curve [m];

 v – design speed of the vehicle [m/s];
 R – radius of a circular arc [m];
 Ψ – acceleration.

The minimum transition curve lengths Lmin  
have been calculated depending on the adopted 
length of the radii of the circular arc R.

RESULTS

First, graphs showed the transition curve’s 
length variability depending on the circular arc’s 
assumed radius.

From Figures 1 and 2 we can see that the 
minimum length of the transition curve always 
increases with the increase in the design speed. 
We observe an inverse relationship between a cir-
cular arc’s speed and projected radius. The larger 
the circular arc radius, we can use a shorter transi-
tion curve for a given vehicle speed. Although the 

Table 1. Allowable increments of centripetal acceleration Ψd on transition curves [3, 4]

Design speed v [m/s] 33.33–27.78 22.22 19.44 16.67 13.89 11.11

Centripetal acceleration gain ψd [m/s2] 0.3 0.5 0.6 0.7 0.8 0.9
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analysed speeds are designed at equal intervals of 
2.78 m/s between 13.89 m/s and 27.78 m/s, the 
diff erences between the minimum lengths of the 
transition curves are not equal. The most consid-
erable diff erences are observed at the smallest cir-
cular arc at a constant vehicle speed. Within one 
designed route, with increasing speed, the diff er-
ences between the minimum lengths of the tran-
sition curves are more signifi cant (they change 
logarithmically). The larger the circular arc radius 

towards which the transition curve tends, the 
more fl attened the diagram in this relationship. As 
expected, the diff erences in the curve lengths for 
the successive design speeds are the smallest for 
the lowest speed. 

The clothoid

Based on the formula [22]:

L = a2
R [m] (3)

where: L – length of clothoid [m];
a – transition curve parameter [m];
R – radius of a circular arc [m].

The parameter values amin presented in Ta-
ble 3, the lengths of the clothoid were calculated 
depending on the speed and the adopted radius 
of the circular arc. We can see that the minimum 
length of the transition curve obtained for the 
clothoid coincide. It results from the fact that the 

Figure 1. The minimum length of the transition curve depending on the radius of the 
circular arc for four design speeds: 13.89, 16.67, 19.44 and 22.22 m/s.

Table 2. Values of parameter amin depending on speed

 Speed
v [m/s]

Acceleration
ψd [m/s2]

Transition curve parameter 
amin [m]

13.89 0.8 57.870

16.67 0.7 81.325

19.44 0.6 110.692

22.22 0.5 148.148

25.00 0.4 197.642

27.78 0.3 267.292

33.33 0.3 351.364

Figure 2. The minimum length of the transition curve depending on the radius of 
the circular arc for three design speeds: 25.00, 27.78 and 33.33 m/s.
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calculated parameter amin is the same as the pro-
portionality coefficient of the clothoid [22].

l
k = a2 = const (4)

where: l – length of transition curve [m];
 k – curvature of the transition curve [ 1𝑚𝑚]  .

Substituting for k with the following relation-
ship defining the curvature: 

k = 1
r  (5)

where: k – curvature of the transition curve [
1
𝑚𝑚] ;

 r – radius of curvature [m].

we get:

lr = a2 (6)

where: l – length of transition curve [m];
 r – radius of curvature [m];
 a – transition curve parameter [m]

and thus:

√lr = a (7)

Therefore, the clothoid was not analysed 
further.

Cubic parabola

Starting from the equations for curvature [23] 
and curve length [24] written in the explicit form:

k =
|f ′′(x)|

[1 + f ′(x)2]
3
2
 (8)

L = ∫ √1 + (f ′(x))2dx
b

a
 (9)

where: k – curvature of the transition curve [ 1𝑚𝑚] ;
 x – value of the OX axis in the Cartesian 

coordinate system [m];
 L – length of the transition curve [m] ;
 a – initial value of the length of the transi-

tion curve [m];
 b – final value of the length of the transi-

tion curve [m].

Substituting the formula for a cubic parabola 
[18]:

y = x3
6a2 (10)

where: y – value of the OY axis in the Cartesian 
coordinate system [m];

 x – value of the OX axis in the Cartesian 
coordinate system [m];

 a – transition curve parameter [m]

and using the fundamental relationship for 
curvature [22]:

k = 1
r  (11)

where: k – curvature of the transition curve [
1
𝑚𝑚] ;

 r – radius of curvature [m].

Table 3. Clothoid lengths

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve 
parameter amin [m] Clothoid lengths L [m]

13.89 57.870 11.163 6.698 4.784 3.721

16.67 81.325 22.046 13.228 9.448 7.349

19.44 110.692 40.843 24.506 17.504 13.614

22.22 148.148 73.160 43.896 31.354 24.387

25.00 197.642 130.208 78.125 55.804 43.403 35.511 30.048 26.042

27.78 267.292 238.150 142.890 102.064 79.383 64.950 54.958 47.630

33.33 351.364 411.523 246.914 176.367 137.174 112.233 94.967 82.305
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the radius and curve length formulas for the dis-
cussed transition curve were derived:

R =
a2(1 + x4

4a4)
3/2

x  (12)

L = ∫ √1 + x4
4a4 dx

x

0
 (13)

where: R – radius of a circular arc [m].
 a – transition curve parameter [m] 
 x – value of the OX axis in the Cartesian 

coordinate system [m];
 L – length of the transition curve [m].

Based on the above formulas, using the bisec-
tion and the trapezoidal method, the lengths of 
a cubic parabola were calculated depending on 
the speed and the adopted radius of the circular 
arc (Table 4).

During the calculations, it turned out that for 
two cases: R = 300 m and v = 27.78 m/s and for 
R = 300 m and v = 33.33 m/s, the function:

f(x) =
a2(1 + x4

4a4)
3/2

x − R (14)

where: a – transition curve parameter [m]
 x – value of the OX axis in the Cartesian 

coordinate system [m]
 R – radius of a circular arc [m],

is positive in the range x ∈ (0, R⟩ . Therefore, it 
was necessary to find the minimum radius of the 
circular arc so that it would be possible to use a 
cubic parabola as the transition curve, with the 

assumed values of the minimum curve length 
from the equation a – being 267.292 and 351.364, 
respectively.

After using the bisection method again, the 
desired values were read out graphically and were 
determined with an accuracy of 1 m. The results 
are presented in Table 5.

After modifying the length of circular arcs, a 
cubic parabola always meets the essential condi-
tion when designing a road route Lcalc ≥ Lmin. It 
should also be noted that the lengths obtained for 
the cubic parabola are usually very close to the 
minimum sizes. From the road designer’s per-
spective, that proportionally increases the radius 
of the circular curve in relation to the designed 
vehicle speed, we are most interested in the val-
ues located on the main diagonal of Table 6. The 
most considerable differences are marked in blue.

When calculating the length of the parabola, 
it was first necessary to obtain the abscissa of x. 
Compared to L, it turned out that the most signifi-
cant difference obtained for v = 33.33 m/s and R = 
300 m does not exceed 5.7 m (Table 7). It shows 
the correctness of the simplification. For road 
construction, the formulas for a cubic parabola, 
where the equality L = x is assumed.

Bernoulli lemniscate

For this analysis, the Bernoulli lemnis-
cate equation has been transformed into a po-
lar form [18]:

ρ2 = 3a2sin(2φ) 0 ≤ φ ≤ π
2 and π ≤ φ ≤ 3π

2  

 ρ2 = 3a2sin(2φ) 0 ≤ φ ≤ π
2 and π ≤ φ ≤ 3π

2  

 

(15)

where: ρ – the leading radius of a lemniscate 
point [rad]; 

Table 4. Cubic parabola lengths

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed 
v [m/s]

Transition curve 
parameter amin [m] Cubic parabola lengths L [m]

13.89 57.870 11.169 6.698 4.784 3.721

16.67 81.325 22.094 13.231 9.449 7.349

19.44 110.692 41.155 24.529 17.508 13.615

22.22 148.148 75.088 44.033 31.379 24.394

25.00 197.642 145.361 78.919 55.947 43.443 35.526 30.055 26.045

27.78 267.292 no data 148.295 102.962 79.633 65.041 54.997 47.649

33.33 351.364 no data 296.526 181.368 138.498 112.709 95.171 82.404
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 φ – the angle that the leading radius ρ of a 
lemniscate point makes with the axis Ox 
(point amplitude) [rad]; 

 a – transition curve parameter.

By using dependence [14]:

R = a2
ρ  (16)

where: R – radius of a circular arc [m];
 a – transition curve parameter [m]
 ρ – the leading radius of a lemnis-

cate point [rad].

The formula for the amplitude of the point φ 
was derived:

φ =
arcsin( a

2

3R2)
2  (17)

where: φ – the angle that the leading radius ρ of a 
lemniscate point makes with the axis Ox 
(point amplitude) [rad]; 

 a – transition curve parameter [m].
 R – radius of a circular arc [m].

Based on the obtained angle values and the 
formula [16]:

L = a√3 ∙ ∫
dφ

√sin(2φ)

φ

0
 (18)

where: L – length of the transition curve [m];
 a – transition curve parameter [m];
 φ – the angle that the leading radius ρ of a 

lemniscate point makes with the axis Ox 
(point amplitude) [rad]; 

Using the trapezoidal method, the length of 
the lemniscate was calculated depending on the 
speed and the adopted radius of the circular arc 
Table 8).

A lemniscate, unlike a cubic parabola, does 
not satisfy the condition at all: Lcalc ≥ Lmin . How-
ever, due to the differences Lcalc – Lmin  (presented 
in Table 9) in the vast majority of cases, do not 
exceed 1 meter (this value is exceeded in three 
cases: v = 27.78 m/s and R = 300 m, v = 33.33 m/s 
and R = 300 m and v = 33.33 m/s and R = 500 m) 
consider that it can be used as a transition curve due 
to the accuracy of construction works and the spec-
ificity of the movement of a wheeled vehicle on 
the road (unconstrained trajectory). As in the case 
of the cubic parabola, the most considerable differ-
ence was obtained for v = 33.33 m/s, R = 300 m.

Satisfying the condition Lcalc ≥ Lmin is motivat-
ed by the requirement that the permissible value 
of centripetal acceleration should not be exceed-
ed along the entire length of the transition curve 
[3, 4]. Therefore, the influence of the transition 

Table 5. Corrected radii of a circular arc

Speed
v [m/s]

Transition curve 
parameter 

amin [m]

Radius of the 
circular R [m] Lparabola [m] Lmin [m] Lparabola – Lmin [m] Lparabola – x [m]

27.78 267.292 372 250.071 192.056 58.014 4.290

33.33 351.364 489 328.780 252.468 76.312 5.643

Table 6. Differences between the minimum length and the calculated length of a cubic parabola

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m]

Differences between the minimum length and the calculated length
of a cubic parabola  ΔL = Lparabola – Lmin [m]

13.89 57.870 0.006 0.000 0.000 0.000

16.67 81.325 0.048 0.004 0.001 0.000

19.44 110.692 0.312 0.024 0.004 0.001

22.22 148.148 1.929 0.137 0.025 0.007

25.00 197.642 15.152 0.794 0.143 0.041 0.015 0.006 0.003

27.78 267.292 5.405 0.898 0.250 0.091 0.039 0.019

33.33 351.364 49.613 5.001 1.324 0.475 0.204 0.100
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curve length described by the Bernoulli lemnis-
cate equation was checked. The values presented 
in Table 10 were calculated based on the formula:

ψ = v3
RL (19)

where: Ψ – acceleration;
 v – design speed of the vehicle [m/s];
 R – radius of a circular arc [m];
 L – length of the transition curve [m]

From the Table 11 we can see that the differ-
ence Ψlemniscate – Ψd in most cases, does not exceed 
0.001 m/s2. For v = 13.89 m/s it is 0.002 m/s2, 
the same as for the design speed of 60.80 and 
25.00 m/s with a circular arc radius of 300 m. 
The most significant differences are noticeable 
where the calculated length of the transition curve 
differed the most from the minimum value: for 
v = 27.78 m/s and v = 33.33 m/s for the smallest 
analysed radius of the circular curve, respectively 
0.004 m/s2 and 0.009 m/s2. Table 12 showing the 
values from the main diagonals for the 3rd-degree 
parabola and the lemniscate.

Table 7. Differences between the calculated length of the cubic parabola and the abscissa

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m]

Differences between the calculated length of the cubic parabola
and the abscissa Δ = Lparabola – x [m]

13.89 57.870 0.000 0.000 0.000 0.000

16.67 81.325 0.003 0.000 0.000 0.000

19.44 110.692 0.020 0.001 0.000 0.000

22.22 148.148 0.123 0.009 0.002 0.000

25.00 197.642 1.017 0.050 0.009 0.003 0.001 0.000 0.000

27.78 267.292 0.346 0.056 0.016 0.006 0.002 0.001

33.33 351.364 3.487 0.318 0.083 0.030 0.013 0.006

Table 8. Lemniscate lengths

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m] Lemniscate lengths L [m]

13.89 57.870 11.139 6.684 4.774 3.713

16.67 81.325 21.997 13.199 9.428 7.333

19.44 110.692 40.744 24.453 17.467 13.585

22.22 148.148 72.933 43.797 31.287 24.335

25.00 197.642 129.529 77.928 55.680 43.309 35.436 29.984 25.986

27.78 267.292 235.232 142.395 101.812 79.205 64.809 54.840 47.528

33.33 351.364 398.934 245.403 175.809 136.831 111.977 94.758 82.126

Table 9. Differences between the minimum length of the transition curve and the calculated length of 
the lemniscate

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m]

Differences between the minimum length of the transition curve 
and the calculated length of the lemniscate

ΔL = Llemniscate – Lmin [m]

13.89 57.870 -0.024 -0.014 -0.010 -0.008

16.67 81.325 -0.049 -0.028 -0.020 -0.016

19.44 110.692 -0.099 -0.053 -0.037 -0.029

22.22 148.148 -0.227 -0.098 -0.067 -0.052

25.00 197.642 -0.679 -0.197 -0.124 -0.093 -0.076 -0.064 -0.055

27.78 267.292 -2.917 -0.495 -0.252 -0.178 -0.141 -0.118 -0.101

33.33 351.364 -12.588 -1.510 -0.558 -0.343 -0.257 -0.209 -0.178
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It is easy to notice from Table 12 that with 
the optimal adaptation of the vehicle speed to 
the radius of the circular arc, the length of the 
transition curve, depending on the equation cho-
sen for it (clothoid, 3rd-degree parabola, Ber-
noulli lemniscate), will vary by up to ±20 cm, 
compared to the minimum value. As shown on 
the example of a lemniscate, the mentioned dif-
ference does not significantly affect the driving 
comfort, the more so as in the case of roads, we 
deal with a free path. 

CONCLUSIONS

The primary condition that transition curves in 
road engineering should meet is: Ψcalc ≤ Ψd, from 
which the condition results: Lcalc ≥ Lmin . The calcu-
lations presented in this paper show that both the 
clothoid and the 3rd-degree parabola meet these 
conditions. If we compare the minimum lengths 
of the spiral curves to those calculated for the 
3rd order parabola, the calculated length of the 
parabola is always higher, and almost 80% of the 

Table 10. The values of the increment of centripetal acceleration for the Bernoulli lemniscate

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m]

The values of the increment of centripetal acceleration
for the Bernoulli lemniscate ψlemniscate [m/s2]

13.89 57.870 0.802 0.802 0.802 0.802

16.67 81.325 0.702 0.701 0.701 0.701

19.44 110.692 0.601 0.601 0.601 0.601

22.22 148.148 0.502 0.501 0.501 0.501

25.00 197.642 0.402 0.401 0.401 0.401 0.401 0.401 0.401

27.78 267.292 0.304 0.301 0.301 0.301 0.301 0.301 0.301

33.33 351.364 0.309 0.302 0.301 0.301 0.301 0.301 0.301

Table 11. Differences between the value of the increment of centripetal acceleration calculated for the Bernoulli 
lemniscate and the limit value

Radius of the circular R [m] 300 500 700 900 1100 1300 1500

Speed
v [m/s]

Transition curve
parameter amin [m]

Differences between the value of the increment of centripetal acceleration
calculated for the Bernoulli lemniscate and the limit value

ψlemniscate – ψd [m/s2]

13.89 57.870 0.002 0.002 0.002 0.002

16.67 81.325 0.002 0.001 0.001 0.001

19.44 110.692 0.001 0.001 0.001 0.001

22.22 148.148 0.002 0.001 0.001 0.001

25.00 197.642 0.002 0.001 0.001 0.001 0.001 0.001 0.001

27.78 267.292 0.004 0.001 0.001 0.001 0.001 0.001 0.001

33.33 351.364 0.009 0.002 0.001 0.001 0.001 0.001 0.001

Table 12. Values obtained on the main diagonal

Speed
v [m/s]

Minimum curve 
length Lmin [m]

Length of cubic 
parabola curve

Lparabola [m]
ΔLparabola [m]

Length of Bernoulli 
Lemniscate curve

Llemniscate [m]
ΔLlemniscate [m] Radius of the 

circular R [m]

13.89 11.163 11.169 0.006 11.139 -0.024 300

16.67 13.228 13.231 0.004 13.199 -0.028 500

19.44 17.504 17.508 0.004 17.467 -0.037 700

22.22 24.387 24.394 0.007 24.335 -0.052 900

25.00 35.511 35.525 0.014 35.436 -0.076 1100

27.78 54.958 54.995 0.037 54.840 -0.118 1300

33.33 82.305 82.398 0.093 82.126 -0.178 1500
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differences fall within the range < 0,000; 1,000 >. 
The lengths obtained for the lemniscate do not 
meet the condition in question at all. Received 
differences Lcalc – Lmin are between -0.008 m for v 
= 13.89 m/s and R = 900 m, and -12.588 m for v = 
33.33 m/s and R = 300 m. This difference exceeds 
1 m for only three cases, which, due to the accu-
racy of construction works and the specificity of 
the movement of a wheeled vehicle on the road 
(unconstrained trajectory), does not disqualify a 
lemniscate as a transition curve. 

Looking at the obtained results of calculations, 
it can be noticed that when designing roads, it is 
crucial to properly adjust the vehicle’s speed to the 
circular curve’s radius. With the increase in the de-
sign speed, the circular arc radius towards which 
the transition curve tends should be increased. 

Based on results, it should be stated that the 
choice of the curves in question as the transition 
curve is of no great importance. However, due to 
their different geometrical course, they are appli-
cable in various terrain conditions. For example, 
lemniscate is very commonly used in serpentine 
and road junctions. Clothoid, on the other hand, is 
popular due to the ease of calculations.
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